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Abstract

Reducing agents required in the dyeing process for vat and sulfur dyes cannot be recycled, and lead to problematic
waste products. Therefore, modern economical and ecological requirements are not fulfilled. The industrial
feasibility of the direct electrochemical reduction of indigo as a novel method has been determined and a
preliminary optimization of electrolytic conditions was performed using a laboratory-scale flow-cell system. The
role of current density, pH, temperature and the rate of mass transport are discussed. The influence of particle size
reduction by the application of ultrasound is critically considered.

1. Introduction

Vat dyes, such as indigo, are traditionally used to dye
cellulosic fibres as they show excellent colour fastness.
Until now in most industrial processes vat dyes are
chemically reduced by sodium dithionite. This procedure
is necessary to attain a water soluble form of the dyestuff,
the so called leuco dye with an affinity to the cellulosic
fibre.After diffusion into the fibre itwill remain fixed there
after having been oxidized back to the water-insoluble
form. This process produces large amounts of sodium
sulphate and sulphite as byproducts which increase the
costs for waste water treatment in the corresponding
textile plants. Hence, the need to develop and use
ecofriendly alternatives is becoming very important.
Investigationswere focused on the replacement of sodium
dithionite by an organic reducing agent (i.e., a-hydroxy-
ketones [1, 2]) of which the oxidation products are
biodegradable [3], or the use of ultrasound to accelerate
the vatting procedure and increase the conversion [4, 5].

Electrochemistry would be an elegant way to reduce
dye molecules, because it minimizes the consumption of
chemicals, but indigo present in an aqueous suspension
cannot be reduced electrochemically under these condi-
tions. Therefore, an electrochemical reduction process
employing a redox mediator (complexes of iron with
triethanolamine or gluconic acid) has been developed [6–
9]. However, the mediator is expensive, in case of
triethanolamine as complexing agent toxicologically not
completely harmless, and the specific reactor performance
is low. A novel route for the environmentally friendly

production of water soluble indigo which is also based on
electrochemical reduction has been described recently
[10–12]. The invention relates to a method for the direct
electrochemical reduction of vat and sulfur dyes in aqu-
eous solutions which does not require a soluble reducing
agent, nor the permanent presence of a redox mediator.
The process is based on a reaction mechanism in which a
radical anion is formed in a comproportionation reaction
between the dye and the leuco dye and a subsequent
electrochemical reduction of this radical. To start the
process an initial amount of the leuco dye has to be
generated by a conventional reaction, that is, by adding a
small amount of a soluble reducing agent. However, once
the reactions have set in, it is not needed anymore and the
further process is self-sustaining. Scheme 1 illustrates
schematically the mechanism of the direct reduction.

Conventional H-cells were used in preliminary experi-
ments. The results were then used as a guide in designing
and operating the continuous flow cells. In the present
work, direct electrochemical reduction has been studied
in a divided flow cell to determine the industrial
feasibility of the method and to optimize electrolytic
conditions.

2. Experimental details

2.1. Chemicals

All aqueous solutions were prepared with deionized
water. Indigo was supplied from BASF, Ludwigshafen,
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Germany. Sodium hydroxide (Fluka, 71695, p.a.),
sodium dithionite (Fluka, 71700, pract. 85%), and
Nitrogen 4.5 were used as-received for experiments.

2.2. Apparatus

A small multipurpose plate and frame cell (EC Electro
MP-Cell from ElectroCell AB, Sweden) was chosen for
the scale-up procedure. The cell permits the use of a
combination of spacers and gaskets compressed (by a
torque wrench to a value of 25 Nm) between two end
plates. As working electrode configuration a flat nickel
plate electrode plus a nickel expanded mesh three-
dimensional electrode (100 mesh, G. Bopp + Co. AG)
was used. The metal meshes were spot-welded to the
plate to ensure good electrical conductivity and stack
with thin (�0.2 mm) nickel strips at the edges and at the
middle between the meshes in a vertical way. This
provided equal access for the electrolyte to all the
surface of the meshes. The mesh was attached to both
sides of a Ni-backplate so that the electrode is used
double sided (anode – membrane – mesh/Ni-backplate/
mesh – membrane – anode). Nickel was also used as
anode material and the cell was divided into two
compartments by a Nafion-324 membrane (DuPont).
The schematic construction of the pilot plant used in the
experiments is given in Figure 1. Both electrolytes were
pumped from a reservoir through the cell in a flow-
through pattern. In case of the catholyte, an additional
circuit (bypass) was installed to circulate the suspension
always independent from the flow rate through the cell
to avoid sedimentation of the dispersed dyestuff. In this
bypass a connection for the online spectrophotometric
measurement was implemented. Cells are connected to a
thermostat (Colora Messtechnik GmbH). A potentio-
stat (Soerensen, DCR 10-40B) was used both for
galvanostatic and potentiostatic electrolysis experi-
ments. Cell potential, cathode potential and current
were measured with multimeters (Metex M 3610).

To analyse the effect of ultrasound on the properties of
the dye dispersion a spiral shaped part of the catholyte-
circuit tube was mounted in an ultrasonic bath.

A sieve-machine (AS 200, Fa. Retsch) with several
sieves was used to obtain well defined fractions of indigo

particles. Particle size analysis was measured by laser
diffraction (Sympatec Helos system H0702). The effect
of ultrasound on the particle size distribution was
investigated by the application of ultrasound on the
sample reservoir of the particle size analyser.

2.3. Procedure

Cathodic solutions of indigo were composed of sodium
hydroxide 1 M and 1 g l)1 of indigo (sieve fraction
between 0.06–0.08 mm). They were deoxygenated dur-
ing at least two hours before the experiment and
maintained under an nitrogen atmosphere during mea-
surements. Various understoichiometric amounts of
dithionite in aqueous solution (prepared after degassing
the water for 2 h) were added by an injection needle
through a septum to reduce indigo. In all experiments
the ratio of dithionite to indigo was smaller than the
stoichiometric one to generate the red coloured radical
species. Anodic solutions consisted of NaOH 1 M. All
reduction experiments were performed at 50 �C. In the
case of different pH-values, the difference in ionic
strength in comparison with a 1 M NaOH (pH 14) was
adjusted with NaCl.

3. Results and discussion

A series of galvanostatic runs was carried out to assess
the effect of operating parameters such as current
density, pH, temperature and flow rate of the catholyte
on the electrochemical kinetics.

3.1. Influence of cathodic current density

Figure 2 shows clearly the typical behaviour of an
electrochemical batch reactor. The concentration decay
is linear up to a current density of 0.3 mA dm�2 and
approximately 200 min reaction time and the reaction
can be described by a zero order kinetic law. Further

Scheme 1. Mechanism of the direct electrochemical reduction of indigo.

Fig. 1. Laboratory flow-cell system. (A) flow-cell (ElectroCell AB); (B)

catholyte tank; (C) anolyte tank; (D) pump; (E) online spectropho-

tometer.
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electrolysis and reduction at a higher current density
result in an exponential decay. Time dependence of
current efficiency is shown in Figure 3. A region with a
constant efficiency of approximately 90% can be
reached in case of low current densities up to
0.25 mA dm�2. In all other cases the efficiency is much
lower and shows an exponential decrease with time. This
is also the case at a current density of 0.1 mA dm�2

after 250 min reaction time. The results compare well
with previous work, indicating that the reduction of
radical species is mass transfer controlled [12]. Without
adding further indigo pigment, after some time the
concentration of the radical has become so small that
the galvanostatic current density exceeds the limiting
current density and mass transport control dominates.
The electrode potential becomes more negative, and a
side reaction takes place at the cathode in the form of
hydrogen liberation.

3.2. Influence of temperature

In Figure 4 the temperature dependence of the electro-
chemical reduction reaction rate is shown. The reaction
is much faster at a higher temperature and this compares

well with previous presented results [11, 12]. However,
the curves shown in Figure 4 were not measured at the
same radical concentration, because the equilibrium
concentration of the radical is increasing with tempera-
ture. Therefore, the higher reduction rate is based on
both, enhanced electrode kinetics and increasing radical
concentration.

3.3. Influence of pH

The influence of catholyte-pH is shown in Figure 5. It is
obvious that reaction rate is clearly enhanced with
increasing pH. Only a slight increase in electrode
kinetics has been observed in previous studies [12].
Therefore, this effect is mainly based on the higher
radical concentration, because it has been observed that
the equilibrium between radical, indigo and leuco indigo
is shifted to the radical side with higher pH. This
stabilizing effect might be caused by the presence of the
more soluble ionic forms of the indigo species, because
nonionic or ‘acid’ forms of reduced indigo are poorly
water-soluble substances.

Fig. 2. Influence of current density for the galvanostatic reduction of

indigo radical. System parameters: 1 M NaOH, 50 �C, Ni-electrode:

600 cm2, total indigo concentration: 1 g l�1, 10% of indigo was

reduced with dithionite at the beginning. Catholyte flow rate:

20 cm3 s�1. Current density: (+) 0.1, (4) 0.01, (j) 0.005, (·) 0.0025

and (¤) 0.001 mA cm�2.

Fig. 3. Time dependence of the current efficiency for the galvanostatic

reduction of indigo radical. System parameters as in Figure 6.

Fig. 4. Influence of temperature on the galvanostatic reduction of

indigo radical. System parameters: 1 M NaOH, Current density:

0.0025 mA cm�2, Ni-electrode: 600 cm2, total indigo concentration:

1 g l�1, 10% of indigo was reduced with dithionite at the beginning.

Catholyte flow rate: 20 cm3 s�1. Temperature: (+) 80, (4) 70, (h) 60

and (¤) 50 �C.

Fig. 5. Influence of pH on the galvanostatic reduction of indigo

radical. System parameters: 50 �C, Current density: 0.0025 mA cm�2,

Ni-electrode: 600 cm2, total indigo concentration: 1 g l�1, 10% of

indigo was reduced with dithionite at the beginning. Catholyte flow

rate: 20 cm3 s�1. pH: (j) 10, (+) 11, (¤) 12, (·) 13, (4) 14.
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3.4. Influence of catholyte flow rate

Figure 6 shows the influence of catholyte flow rate on
the limiting current. At higher velocities, mass transport
of the radical species to the cathode is enhanced. The
result is a higher limiting current and, therefore, a higher
rate of concentration decay in the mass transfer con-
trolled region.

3.5. Influence of particle size and the use of ultrasound

Ultrasound was applied to the electrolyte before enter-
ing the reactor in order to influence the properties of the
dye dispersion. It is obvious from Figure 7 that in the
presence of ultrasound the reaction rate of radical
reduction is enhanced slightly.

Figure 8 shows the particle size distribution of a
commercial available indigo (BASF AG, Ludwigshafen,
Germany) and the effect of ultrasound on the particle
size distribution can be seen in Figure 9. It is obvious
that larger particles or agglomerates of solid particles

(>100 lm) are effectively broken down and smaller
particles with a size between 1 and 10 lm are created.
This is in agreement with results obtained by Lindley
[15], that ultrasound can reduce the particle size of
nonmetallic particles down to usually 1–10 lm. A longer
application of ultrasound leads only to a change in the
surface of the particles, but no more smaller particles are
produced [13, 14]. Therefore, the positive effect is based
mostly on the increase of the active reaction surface due
to reduction of the particle diameter. This can increase
the production rate of radical species, but on the other
hand it is also possible, that on the larger organic/water-
interface more radical will adsorb and, therefore, the
free bulk concentration will be lower. However, it has
never been observed in the u.v.–vis. spectra, that the
radical concentration is decreasing after the application
of ultrasound. Rather a slight increase was obtained,
probably indicating that radical can be generated also
by ultrasound.

3.6. Influence of organic solvents

The acceleration of the vatting procedure by methanol is
a well known phenomenon. For example, a content of
20 ml l�1 MeOH is used as a catalyst in the vatting of
indigo with ultrasonic generators [4]. This effect maybe
based on the fact, that methanol can dissolve indigo and
its correlated species, the radical and the leuco dye,

Fig. 6. Influence of catholyte flow rate on the limiting currents of the

electrochemical reduction of indigo radical. System parameters: 1 M

NaOH, 50 �C, Ni-electrode: 600 cm2, total indigo concentration:

1 g l�1, 10% of indigo was reduced with dithionite at the beginning.

Fig. 7. Influence of ultrasound on kinetics of the galvanostatic

reduction of indigo radical. System parameters: 1 M NaOH, 50 �C,

Current density: 0.0025 mA cm�2, Ni-electrode: 600 cm2, total indigo

concentration: 1 g l�1, 10% of indigo was reduced with dithionite at

the beginning. Catholyte flow rate: 20 cm3 s�1. Key: (m) without

ultrasound; (+) with ultrasound.

Fig. 8. Particle size distribution of BASF indigo.

Fig. 9. Influence of ultrasound on the particle size distribution.

Ultrasound applied: (n) none, (j) 1 s, (¤) 2 s, (d) 5 s and (·) 10 s.
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much better than water. Organic species adsorbed on
the indigo particles will be washed out into the bulk.
However, a lasting stabilization effect of the radical
species was only observed at concentrations higher than
20 vol % of the organic solvents (i.e., methanol, iso-
propanol, ethanol, DMF), but it is impossible to use
such high amounts of organic solvent in the dyebath.

4. Conclusions

The industrial feasibility of the novel route for the
environmentally friendly production of water soluble
leuco indigo by direct electrochemical reduction of indigo
in aqueous solutions has been studied in a divided flow
cell. Optimized conditions in the system were sought and
a scale-up in indigo concentration to 1 g l�1 was
achieved. Increasing pH and temperature can enhance
the reduction rate and a better mass transfer was achieved
by higher flow velocities in the reactor. In the presence of
ultrasound reaction rate is enhanced slightly, based on
increased active reaction surface due to reduction in
particle diameter. However, the radical concentration
still is low and, consequently, so is the specific reactor
performance. Current efficiency is also limited to a
maximum of 90% at very low current densities.

Organic solvents can increase the radical concentra-
tion and, consequently, the reaction rates, but lasting
effects were only observed at non-viable concentrations
of higher than 20 vol %. Therefore, future work will
include a study of the influence of important parameters
on the concentration of the radical species like surfac-
tants and an optimization of this new electrochemical
process.
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AB, Täby Sweden (J. and P. Bersier, L. Carlsson) for
valuable support and discussion. L. Maedler, M. Huber
and S.E. Pratsinis, Institute of Process Engineering,
ETH Zurich, are acknowledged for assistance in mea-
suring particle size distributions.

References

1. S. Federer-Lerch, PhD thesis, ETH Zurich (1995) No. 11.351.

2. M. Jermini, PhD thesis, ETH Zurich, (1997) No. 12.024.

3. B. Haaser, PhD thesis, ETH Zurich, (1996) No. 11.836.

4. W. Marte, A. Marte and E. Marte, Patent EP 0373119 (1990).

5. W. Marte, Int. Text. Bull, ITB Veredelung 41 (1995) 33.

6. T. Bechtold, E. Burtscher, A. Amann and O. Bobleter, Angew.

Chem. Int. Ed. Engl. 31 (1992) 1068.

7. T. Bechtold, E. Burtscher, A. Turcanu and O. Bobleter,

J. Electrochem. Soc. 143 (1996) 2411.

8. T. Bechtold and E. Burtscher, Int. Textile Bull. 6 (1998) 64.

9. T. Bechtold, E. Burtscher, A. Turcanu and F. Berktold, Melliand

Textilberichte 81 (2000) 195.

10. W. Marte, O. Dossenbach and U. Meyer, Patent WO 00/31334

(2000).

11. A. Roessler, O. Dossenbach, W. Marte, U. Meyer and P. Rys,

Chimia 55 (2001) 879.

12. A. Roessler, D. Crettenand, O. Dossenbach, W. Marte and P. Rys,

Electrochim. Acta 47 (2002) 1989.

13. T.J. Mason and P. Lorimer, ‘Sonochemistry’ (Ellis Horwood–

Wiley, Chichester, UK, 1988).

14. K.S. Suslick, D.J. Casadonte, M.L.H. Gren and M.E. Thompson,

Ultrasonics 25 (1987) 56.

15. J. Lindley, T.J. Mason and J.P. Lorimer, Ultrasonics 25 (1987) 45.

651


